Canonical dual approach for contact mechanics problems with friction
نویسندگان
چکیده
This paper presents an application of canonical duality theory to the solution of contact problems with Coulomb friction. The contact problem is formulated as a quasi-variational inequality whose solution is found by solving its Karush– Kuhn–Tucker system of equations. The complementarity conditions are reformulated by using the Fischer–Burmeister complementarity function, obtaining a non-convex global optimization problem. Then canonical duality theory is applied to reformulate the non-convex global optimization problem and define its optimality conditions, finding a solution of the original quasi-variational inequality. We also propose a methodology for finding the solutions of the new formulation, and report the results on well-known instances from literature.
منابع مشابه
A domain decomposition algorithm for contact problems with Coulomb’s friction
Contact problems of elasticity are used in many fields of science and engineering, especially in structural mechanics, geology and biomecanics. Many numerical procedures solving contact problems have been proposed in the engineering literature. They are based on standard discretization techniques for partial differential equations in combination with a special implementation of non-linear conta...
متن کاملA Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction
In this paper, efficient algorithms for contact problems with Tresca and Coulomb friction in three dimensions are presented and analyzed. The numerical approximation is based on mortar methods for nonconforming meshes with dual Lagrange multipliers. Using a nonsmooth complementarity function for the 3D friction conditions, a primal-dual active set algorithm is derived. The method determines act...
متن کاملA Primal-dual Active Set Algorithm for Three-dimensional Contact Problems with Coulomb
In this paper, efficient algorithms for contact problems with Tresca and Coulomb friction in three dimensions are presented and analyzed. The numerical approximation is based on mortar methods for nonconforming meshes with dual Lagrange multipliers. Using a nonsmooth complementarity function for the three-dimensional friction conditions, a primal-dual active set algorithm is derived. The method...
متن کاملCanonical Duality Theory: Connections between nonconvex mechanics and global optimization
This paper presents a comprehensive review and some new developments on canonical duality theory for nonconvex systems. Based on a tri-canonical form for quadratic minimization problems, an insightful relation between canonical dual transformations and nonlinear (or extended) Lagrange multiplier methods is presented. Connections between complementary variational principles in nonconvex mechanic...
متن کاملThe R-linear convergence rate of an algorithm arising from the semi-smooth Newton method applied to 2D contact problems with friction
The goal is to analyze the semi-smooth Newton method applied to the solution of contact problems with friction in two space dimensions. The primal-dual algorithm for problems with the Tresca friction law is reformulated by eliminating primal variables. The resulting dual algorithm uses the conjugate gradient method for inexact solving of inner linear systems. The globally convergent algorithm b...
متن کامل